

SCHOOL
OF YOUNG SCIENTISTS

Structure and Catalytic Properties of a Cu²⁺-Containing Hydrogel of Zirconium Dioxide

E. G. Kovaleva*, L. S. Molochnikov*, V. G. Kharchuk**, O. V. Kuznetsova**,
A. B. Shishmakov**, M. Yu. Yanchenko***, L. Yu. Buldakova***, I. N. Zhdanov*,
Yu. V. Mikushina**, and L. A. Petrov**

* Ural State Forestry Engineering University, Yekaterinburg, Russia

** Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, Yekaterinburg, Russia

*** Institute of Solid-State Chemistry, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620219 Russia

Received July 4, 2003

Abstract—The distribution of Cu²⁺ ions in ZrO₂ and sulfated ZrO₂ hydrogel phases was studied by EPR spectroscopy and voltammetry. The formation of the following three types of copper structures was observed: mononuclear Cu²⁺ complexes (**A**), magnetic associates (**B**), and Cu²⁺ compounds (**C**) that gave no EPR signals under the conditions used in the spectroscopic measurements. The specific catalytic activity of various Cu²⁺ compounds in the liquid-phase reaction of 2,3,5-trimethyl-1,4-hydroquinone oxidation was determined. The copper complexes **C** were found to exhibit the highest catalytic activity.

INTRODUCTION

The capability for self-organization and evolution is a fundamental property of highly dispersed systems, including gels—in particular, element dioxide hydrogels. This property is related to thermodynamic non-equilibrium and the excess energy of a developed interface between solid nanoparticles; this is responsible for a trend towards free energy minimization and system stabilization. The resulting flexible structured hydrate network and highly organized near-surface element dioxide hydrogel layers provide unique conditions for the formation of surface metal complexes capable of driving catalytic reactions in a certain direction. Moreover, because of the unique properties of hydrogels (such as enhanced chemical stability, accessibility of active surface centers over the entire reaction volume, capability for intense heat and mass exchange in the absence of brittle fracture, ease of separation from reaction products, and possibility of multiple regeneration), use of hydrogels in heterogeneous catalysis is of scientific and practical interest.

Previously, we found that a new polyfunctional heterogeneous system, which includes Cu²⁺-containing SiO₂, SnO₂, and TiO₂ hydrogels, consists of different copper structures that are catalytically active centers in hydroxyarene oxidation reactions [1–4]. In this context, the structure and distribution of copper structures on the surface of hydrogels is one of the determining factors of the system.

The aim of this work was to study the structure and distribution of various copper structures on the surface of ZrO₂ and sulfated ZrO₂ hydrogels (it is well known that their unhydrated analogs exhibit considerable cat-

alytic and sorption activity [5, 6]) and to determine their catalytic activity in the liquid-phase oxidation reaction of 2,3,5-trimethyl-1,4-hydroquinone as a model hydroxyarenes.

EXPERIMENTAL

The test materials were Cu²⁺-containing hydrogels of ZrO₂ (**I**) and sulfated ZrO₂ (**II**). The gels with the specific surface area $S_{sp} = 250 \pm 12 \text{ m}^2/\text{g}$ were synthesized by the hydrolysis of a 0.28 M aqueous ZrSO₄ solution with a 2 M KOH solution to pH 7.5 or 5.0 for gels **I** and **II**, respectively, followed by repeated washing with distilled water. After this washing, the continuous phase had pH 7.0. The values of S_{sp} were determined from the adsorption of an inert gas. The composition of hydrogel **II** (the $-\text{SO}_3\text{H}$ group concentration was 17 wt %, and the Zr/S element ratio was 3 : 1) was determined using elemental analysis, IR spectroscopy (on a Specord M-80 spectrometer), and potentiometric titration (with the use of a pH 121 meter) [7, 8].

The oxidation of 2,3,5-trimethyl-1,4-hydroquinone was experimentally studied in a thermostatted reactor equipped with a reflux condenser and a bubbler for introducing air via stirring (at a stirrer speed higher than 2 s⁻¹ and an air flow rate of 6.2 l/h) to insure the occurrence of the process in the kinetic region. The reaction was performed in 10 ml of an aqueous methanol solution (water/methanol ratio of 1 : 1, by volume) at 50°C with a thermostating accuracy of $\pm 0.2^\circ\text{C}$. An aqueous solution of copper chloride (5.9×10^{-5} mol of CuCl₂ · 2H₂O), 0.28×10^{-4} – 1.6×10^{-2} mol of gels **I** and **II**, and a substrate (6.6×10^{-4} mol) solution in methanol were placed in the reactor and stirred. The substrate solution

was introduced with the delay required for the complete sorption of copper(II) by gels **I** and **II**.

We found that 5.9×10^{-5} mol of CuCl₂ · 2H₂O was completely sorbed within ~ 45 s on 1.2×10^{-3} (or more) mol of ZrO₂, which forms hydrogel **I**, and on 3.7×10^{-3} (or more) mol of sulfated ZrO₂, which forms hydrogel **II**. The concentration of Cu²⁺ ions in the phase of test gels was determined by atomic absorption spectrometry on a Perkin-Elmer 403 spectrometer. The concentration of Cu²⁺ ions in the phase of gels **I** and **II** was varied by introducing various amounts of these gels into the reaction zone. The concentrations of Cu²⁺ ions in gels **I** and **II** were varied within the ranges 5×10^{-2} – 2×10^{-1} and 3×10^{-2} – 2×10^{-1} mmol/g gel.

Under the above conditions of stirring, 6.6×10^{-4} mol of 2,3,5-trimethyl-1,4-hydroquinone was completely sorbed on 1.2×10^{-3} (or more) mol of gels **I** and **II** in 10 ml of an aqueous methanol solution within ~ 60 s. The sorption values of the substrate on the test gels were found by the quantitative determination of the substrate in mother liquors after separating the gel phase. The procedure of GLC analysis on a Chrom-4 chromatograph was analogous to that described elsewhere [9].

The kinetic measurements were performed by sampling and the GLC determination of the starting compound in the samples [9]. The resulting functions of substrate concentrations were approximated by polynomials. The initial reaction rates w_0 were calculated using numerical differentiation and interpolation techniques. The determination error of w_0 was no higher than 10%. The initial rates of substrate consumption $w_{0,A}$, $w_{0,B}$, and $w_{0,C}$ in the interaction with mononuclear Cu²⁺ complexes (**A**), magnetic associates (**B**), and Cu²⁺ compounds (**C**) that do not give EPR signals, respectively, were calculated by solving combined algebraic equations of the form

$$w_{0,i} = w_{0,A}n_{i,A} + w_{0,B}n_{i,B} + w_{0,C}n_{i,C},$$

where $w_{0,i}$ is the initial reaction rate at i equal to the ratio of the amount of Cu²⁺ to the amount of the gel; and $n_{i,A}$, $n_{i,B}$, and $n_{i,C}$ are the fractions of complexes **A**, **B**, and **C**, respectively, at the Cu²⁺ concentration [Cu²⁺]_i in the gel phase. The calculation was performed with consideration of the w_0 of a parallel reaction of substrate oxidation by oxygen. The determination error in $w_{0(A,B,C)}$ was no higher than 15%.

Because the EPR spectra of moist samples are difficult to measure, we measured the EPR spectra of Cu²⁺ on the surface of gels that were filtered off and dried at room temperature.¹ The EPR spectra were measured on

¹ The sample drying conditions under which the complexes did not undergo structural changes, and the ratio between various Cu²⁺ species remained unaffected, were found in preliminary experiments. The EPR spectrum began to change, as compared to that of a hydrogel solution vitrified at 77 K, which sorbed Cu²⁺ ions (the ratio water/methanol = 1 : 1), only when the samples were dried at a temperature higher than 333 K.

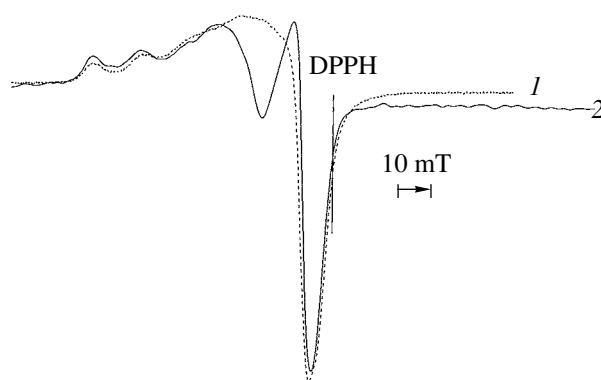


Fig. 1. EPR spectra of Cu²⁺ ions in hydrogels (1) **I** and (2) **II** at [Cu²⁺] < 0.03 mmol/g gel and $T = 293$ K.

a PS 110.X 3-cm EPR radiospectrometer (Belarus) at room temperature in thin-walled round quartz ampules ($d = 4$ mm). The treatment and analysis of the EPR spectra were performed with the use of the software package of the spectrometer.

The voltammetric measurements were performed with the use of a PU-1 polarograph. The potential sweep rate was 20 mV/s. An electroactive carbon-paste electrode was used as an indicator electrode; the apparent surface area of this electrode was 0.07 cm². The active part of the electrode consisted of a mixture of the test compound, spectroscopically pure graphite, and Vaseline oil as a binder in a weight ratio of 1 : 4 : 2, respectively. To stabilize the true surface of the electrode, the test substances and graphite were sifted, and fractions with a particle size of ≤ 63 μm were taken [10].

A glassy carbon crucible served as an auxiliary electrode, and an EVL-1M1 saturated silver–silver chloride electrode served as a reference electrode. A solution of CH₃OH + H₂O (1 : 1) + 0.025 M HCl was used as a supporting electrolyte. The voltammograms were measured over a potential range from +0.4 to -2.0 V.

RESULTS AND DISCUSSION

EPR spectroscopy. We found that three types of copper structures (**A**, **B**, and **C**) were formed on the surface of the test hydrogels. The anisotropic EPR spectra of copper, resolved in a parallel orientation with the parameters $g_{\parallel} = 2.332 \pm 0.005$ and $A_{\parallel} = 13.6 \pm 0.3$ mT (Fig. 1), suggest the formation of complexes **A** of the same structure in hydrogels **I** and **II**. These complexes were formed even at small amounts of adsorbed copper ([Cu²⁺] < 0.03 mmol/g gel). The parameters of the EPR spectra of Cu²⁺ in these gels are consistent with those observed in freshly precipitated aluminum and gallium hydroxides [11] and in the Na⁺ form of carboxylic cation exchangers [12, 13]; they suggest that the closest

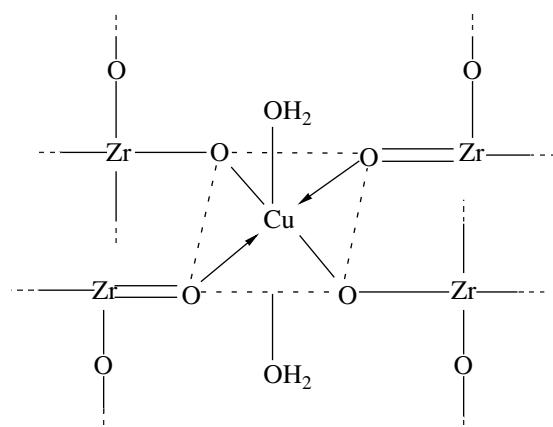


Fig. 2. Structure of mononuclear Cu^{2+} complexes formed on the surface of test gels I and II.

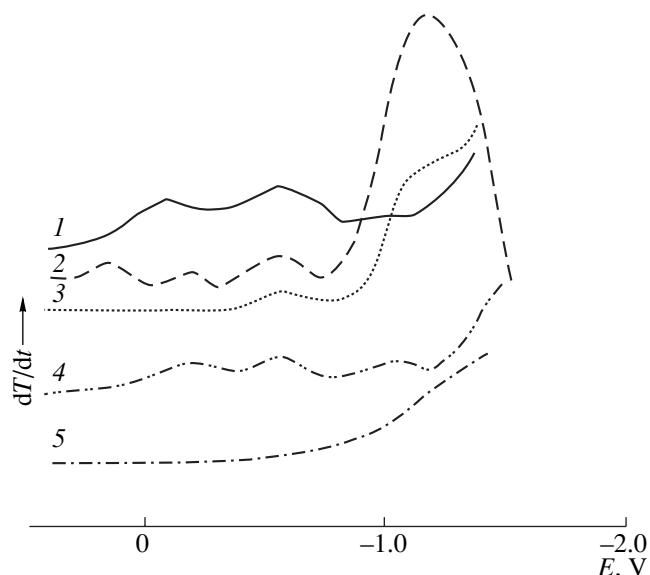


Fig. 3. Electrochemical behavior of Cu^{2+} ions on the surface of hydrogels I and II: (1) Cu^{2+} —electroactive carbon-paste electrode, (2) Cu^{2+} —gel II, (3) gel II, (4) Cu^{2+} —gel I, and (5) gel I.

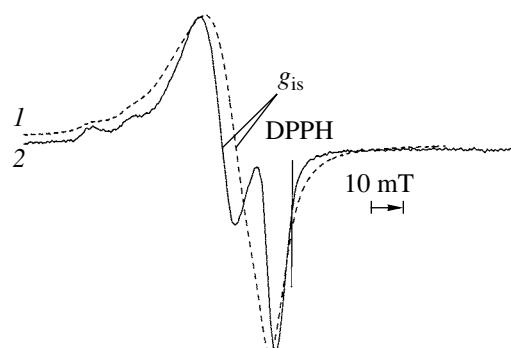
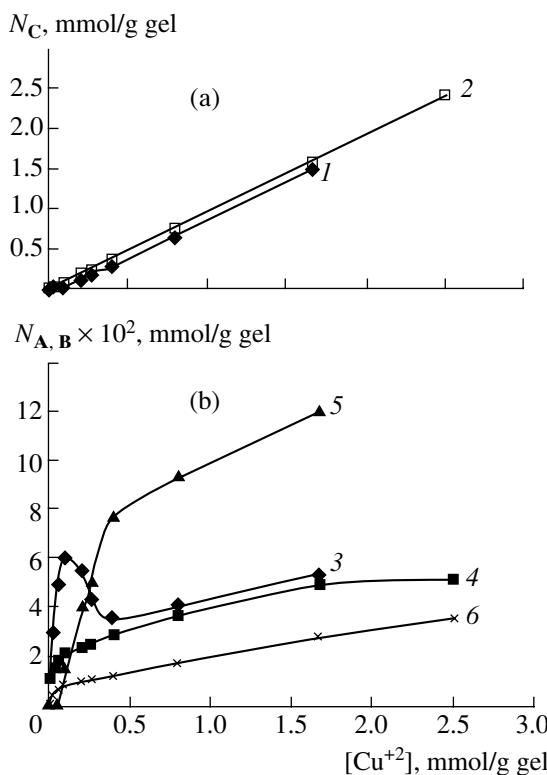



Fig. 4. EPR spectra of Cu^{2+} ions in hydrogels at $T = 293$ K: (1) I ($[\text{Cu}^{2+}] = 1.67$ mmol/g gel) and (2) II ($[\text{Cu}^{2+}] = 2.5$ mmol/g gel).

environment of the Cu^{2+} ions consists of the oxygen atoms of a zirconia matrix of hydrogels and water molecules (Fig. 2).

In a previous study of sulfo cation exchangers [14], it was found that the sulfo group does not enter the first coordination sphere of Cu^{2+} ions and, consequently, has no effect on the parameters of the EPR spectra. Therefore, it would not be expected that the presence of sulfo groups in hydrogel II would manifest itself in the EPR parameters of copper complexes. However, it is likely that sulfo groups participate in the formation of the second coordination sphere of a portion of copper complexes in this gel to make the water molecules in the first coordination sphere of Cu^{2+} ions more mobile. This conclusion follows from the appearance of a peak with a potential of +0.14 shifted toward positive potentials in the curve of copper reduction on hydrogel II, as compared with hydrogel I and the electroactive carbon-paste electrode (Fig. 3). An increase in $[\text{Cu}^{2+}]$ resulted in the formation of compounds B with an increased local concentration of copper ions on the surface of the gels. This is evident from the appearance of an almost symmetrical line with the averaged g -factor (g_{is}) equal to 2.150 ± 0.01 (in the case of gel II) and 2.130 ± 0.01 (in the case of gel I), along with an anisotropic signal (Fig. 4). The difference in the anisotropic signal parameters for the two hydrogels is indicative of the different structures of compounds B. On the surface of hydrogel II, compounds B are formed that are the associates of closely spaced and exchange-interacting complexes A, because the averaged g -factor coincides with the value of $g_{\text{av}} = (g_{\parallel} + 2g_{\perp})/3$ for complexes A. It is our opinion that structures B formed on the surface of gel I are the associates of Cu^{2+} ions, which do not form an individual phase of $\text{Cu}(\text{OH})_2$ and are not arranged in complexes A with oxygen in a zirconia matrix. In our opinion, this is an intermediate species in which the aqua hydroxo complexes of copper are linked with each other and, at particular sites, with inorganic polymer chains. Complexes A, which were formed at the initial stage of sorption, took part as growth sites in the formation of compounds B in gel I. This follows from a dramatic decrease in the concentration of complexes A and a simultaneous increase in the concentration of compounds B in gel I (Fig. 5b, curves 3, 5).

The formation of structurally different compounds B in the test hydrogels can be explained by different compositions of these hydrogels. The presence of sulfo groups in the structure of hydrogel II affects the acidity of the medium and, evidently, considerably decreases the probability of the partial hydrolysis of copper ions. The participation of sulfo groups in complexation may also be responsible for the formation of magnetic associates B from individual complexes A in gel II. In these associates, the chemical bonds in the individual copper complexes that form these associates are weakened. It

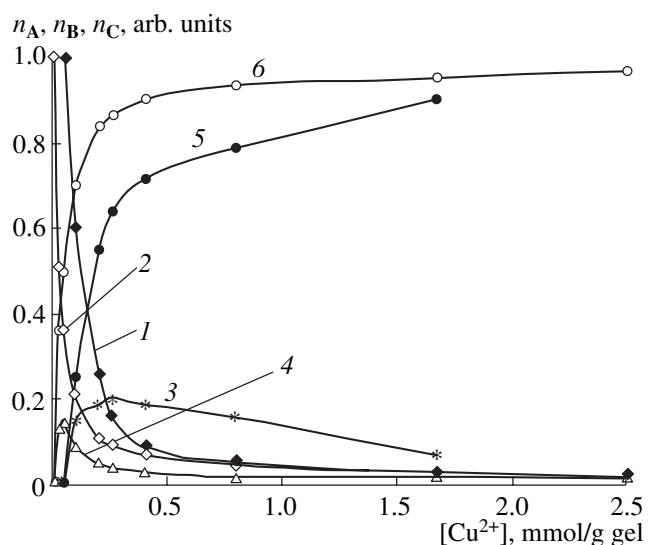


Fig. 5. Absolute amounts of copper structures (a) (1, 2) C, (b) (3, 4) A and (5, 6) B on the surfaces of test gels (1, 3, and 5) I and (2, 4, and 6) II as functions of the concentration of sorbed Cu^{2+} ions.

is most likely that this fact is responsible for the appearance of a peak with a potential of +0.14 in the voltammetric curve of Cu^{2+} -containing gel II (Fig. 3).

An inconsistency between the spectroscopic and sorption data for the test gels over the entire range of Cu^{2+} sorption suggests the formation of compounds C, the absolute amount of which on the surface of gels I and II increases with $[\text{Cu}^{2+}]$ (Fig. 5a). By analogy with similar structures formed in ion exchangers [11, 14], these compounds can be a separate phase of $\text{Cu}(\text{OH})_2$ or polynuclear Cu^{2+} compounds with bridging OH^- groups.

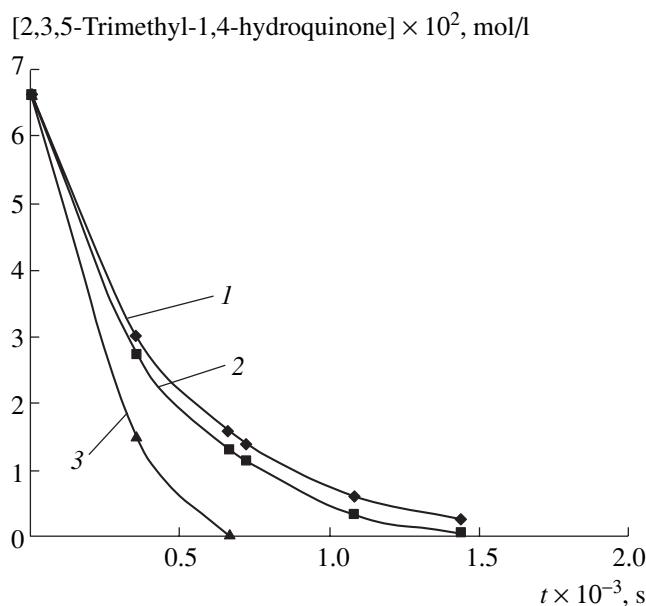
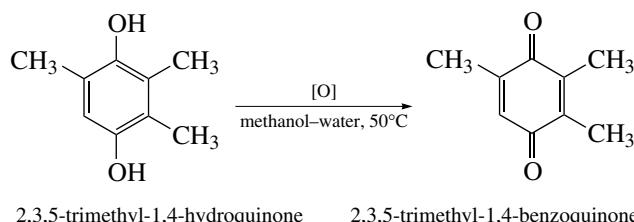

An analysis of the EPR spectra of the test gels demonstrated that, as the concentration of Cu^{2+} in the gels was increased up to the exhaustion of their exchange capacity, both complexes A and compounds B occurred on their surfaces (Fig. 5b). We established this fact only for the ZrO_2 hydrogels. In the case of previously studied Cu^{2+} -containing hydrogels of SnO_2 and TiO_2 , complexes A were gradually converted into compounds B with increasing $[\text{Cu}^{2+}]$; this was supported by the complete conversion of anisotropic spectra into isotropic spectra [4]. Various quantitative ratios between the compounds A, B, and C were reached by varying the value of $[\text{Cu}^{2+}]$. The fractions of these compounds in the total sorbed copper contents of the gel surfaces were

Fig. 6. Fractions of copper structures (1, 2) A, (3, 4) B, and (5, 6) C in the total concentration of Cu^{2+} ions sorbed on the surfaces of test gels (1, 3, and 5) I and (2, 4, and 6) II.

determined by the computer separation of EPR signals. Figure 6 demonstrates the corresponding curves for the test gels. It can be seen in Fig. 6 that the fraction of complexes A (n_A) on the surface of hydrogels decreased with $[\text{Cu}^{2+}]$ (curves 1, 2); the fraction of compounds B (n_B) initially increased only slightly and then decreased, passing through a maximum (curves 3, 4), whereas the fraction of compounds C (n_C) steadily increased (curves 5, 6).

In our opinion, such behavior (Figs. 5, 6) reflects the nonuniform distribution of Cu^{2+} localization sites on the surface of the test gels. There are areas with the predominant localization of complexes A and of compounds B and C. Complexes A are formed at low gel surface coverages with Cu^{2+} ions. As $[\text{Cu}^{2+}]$ increased, the formation of these complexes was practically finished, and the formation of compounds B and C occurred. In this case, the number of the localization sites of compounds B was much smaller than that of compounds C. A decrease in the functions $n_B = f([\text{Cu}^{2+}])$ with increasing $[\text{Cu}^{2+}]$ in the test hydrogels was due to the saturation of the hydrogels with structures B with increasing gel coverage by structures C. Note that the absolute amounts of structures A, B, and C ($N_{\text{A}, \text{B}, \text{C}}$, mmol/g gel) (Figs. 5a, 5b) and their fractions (Fig. 6) at the same value of $[\text{Cu}^{2+}]$ were different for gels I and II. In gel I, greater concentrations of compounds B were detected compared with gel II. We also found that compounds B and C in gel II began to appear at lower $[\text{Cu}^{2+}]$ compared with gel I. It is likely that sulfo groups are also the sites of growth for the formation of structures B in hydrogel II; this fact is responsible for the appearance of these structures at smaller degrees of gel saturation with Cu^{2+} ions. The

Fig. 7. Kinetic curves of substrate consumption in the oxidation of 2,3,5-trimethyl-1,4-hydroquinone with atmospheric oxygen in the presence of (1) a $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$ solution or in gels (2) **I** and (3) **II**.


introduction of sulfo groups also provided a more uniform coverage of this hydrogel with complexes A (Fig. 5b).

Voltammetry. An analysis of Cu^{2+} reduction curves at the electroactive carbon-paste electrodes containing hydrogels **I** and **II** (Fig. 3) demonstrated that (a) the $\text{Cu}^{2+} \rightarrow \text{Cu}^+$ reduction ($E_{\text{peak}} = -0.20$ V) at an electroactive carbon-paste electrode containing hydrogel **I** was hindered compared with that at a carbon-paste electrode without gels **I** and **II** ($E_{\text{peak}} = -0.10$ V), because the $\text{Cu}^{2+} \rightarrow \text{Cu}^+$ reduction potential was shifted to a negative region; (b) two peaks (with potentials of +0.14 and -0.20 V, respectively) corresponded to the $\text{Cu}^{2+} \rightarrow \text{Cu}^+$ reduction at an electroactive carbon-paste electrode containing hydrogel **II**; one of these electrodes exhibited the same potential as that of hydrogel **I**, whereas the other potential was shifted to a positive region to suggest easy Cu^{2+} reduction; (c) a peak with a potential of -0.55 V, which exhibited the same potential in all of the three curves, corresponded to the $\text{Cu}^+ \rightarrow \text{Cu}^0$ reduction. It is well known that the formation of stable complex compounds results in a shift of the reduction potential toward negative values. Therefore, we believe that the occurrence of a peak with a potential of -0.20 V, which is shifted toward negative values, in the voltammetric curves of hydrogels is due to the fact that sorbed Cu^{2+} ions form a strong compound in hydrogel phases. The appearance of a peak with a potential of +0.14 V in the reduction curve of copper(II) sorbed by hydrogel **II** can be explained in two different ways: the shift of a peak toward a positive

region, compared with the peak of Cu^{2+} reduction at an electroactive carbon-paste electrode containing no gels, can reflect either the formation of a strong Cu^+ compound, which results from the reduction of Cu^{2+} ions, or the formation of a more mobile Cu^{2+} compound in a hydrogel, compared with the Cu^{2+} compound that occurs in solution [15]. In the former case, a peak, due to the $\text{Cu}^+ \rightarrow \text{Cu}^0$ reduction and shifted toward the region of negative potentials, would appear; however, we did not detect this peak in the experimental voltammetric curve. We believe that the peak with a potential of +0.14 V reflects the presence of Cu^{2+} compounds with the sulfo group in hydrogel **II**; the structure of these compounds was discussed above.

Peaks that were detected in voltammograms and not discussed in the text are not related to the reduction of copper ions.

Catalysis. The liquid-phase oxidative dehydrogenation of 2,3,5-trimethyl-1,4-hydroquinone occurred in accordance with the following reaction scheme:

This reaction occurred with the quantitative yield of 2,3,5-trimethyl-1,4-benzoquinone. We found that the test hydrogels in the absence of copper inhibited the oxidative hydrogenation process.

Substrate oxidation on Cu²⁺-containing hydrogels **I** and **II** accelerated the reaction, as evidenced from the kinetic curves of substrate consumption (Fig. 7). It can be seen in Fig. 7 that the catalytic activity of the Cu²⁺-containing hydrogel **II** in the above reaction was higher than that of hydrogel **I**. We associate this fact with structural differences between the test hydrogels, with different structures of compounds **B** in the test hydrogels, and with the distributions of compounds **A**, **B**, and **C** on their surfaces.

With the use of the dependence of the initial rates of 2,3,5-trimethyl-1,4-hydroquinone oxidation (w_0) on $[\text{Cu}^{2+}]$ for the set of copper structures (Fig. 8), we determined the specific initial rates of substrate oxidation ($w_{0,\text{A}}$, $w_{0,\text{B}}$, and $w_{0,\text{C}}$) by these structures; these initial rates characterize their individual reactivities (see table). Data on the fractional concentrations of various copper structures were used in the calculations (Fig. 6).

It can be seen in the table that individual Cu²⁺ ions in gels are much less active than in solution. This is not surprising, because the accessibility of Cu²⁺ ions to a substrate in solution is much higher than in gels. A comparison of data on the initial specific rates $w_{0(A, B, C)}$ of 2,3,5-trimethyl-1,4-hydroquinone oxidation by vari-

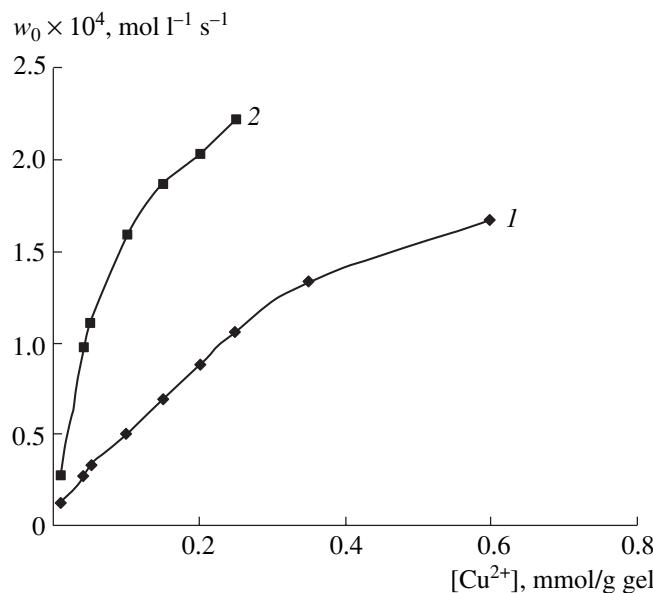


Fig. 8. Initial rates of 2,3,5-trimethyl-1,4-hydroquinone oxidation as functions of the concentration of sorbed Cu²⁺ ions on the surfaces of test gels (1) I and (2) II.

ous copper structures demonstrated a higher catalytic activity of Cu²⁺ ions bound in compounds C and B, compared with complexes A. Compounds C in heterogeneous catalysts exhibit a higher activity than that of Cu²⁺ ions in solution. This may be due to an increased mobility of electrons in these polynuclear copper(II) complexes with bridging OH⁻ groups and to the possibility of electron density transfer in them. Previously [16, 17], a correlation between the mobility of electrons and the catalytic activity of Cu²⁺ was found using microwave conductivity measurements. The acceleration of dehydrogenation was explained by the fact that, in this case, the reactions of hydroquinone oxidation and oxygen reduction can be spatially separated.

Initial specific rates of 2,3,5-trimethyl-1,4-hydroquinone oxidation by copper compounds A, B, and C

Gel	w ₀ × 10 ⁴ , mol l ⁻¹ s ⁻¹			
	w ₀ , A ± 0.03	w ₀ , B ± 0.04	w ₀ , C ± 0.04	w ₀ ± 0.16 (oxidation with Cu ²⁺ ions in solution)
Without gel	—	—	—	0.54
Gel I	0.10	0.30	0.70	—
Gel II	0.10	0.40	0.80	—

It is our opinion that compounds C in the test hydrogel phases exhibited a large specific surface area, and that the Cu²⁺ ions in them were much more accessible to hydroquinone compared with Cu²⁺ ions in compounds B. It is likely that, if it was possible to take into account Cu²⁺ ions that actually participated in the catalytic process in compounds B, their initial specific rates would be at least no lower than those for compounds C. The productivity of the process, which manifests itself in the calculated values of initial specific rates, increases as a result of the increasing number of Cu²⁺ ions that actually participate in catalysis.

The high catalytic activity of Cu²⁺-containing hydrogel II correlates with the voltammetric data on the formation of copper complexes, which undergo more reversible reduction.

Thus, the interaction of Cu²⁺ ions with the test hydrogels essentially depends on the composition of these gels and on the concentration of copper on their surfaces. The presence of the sulfo group in the structure of hydrogels is responsible for the fractional distribution of various copper compounds on the surface and for the high catalytic activity of these compounds in the oxidative dehydrogenation reaction of 2,3,5-trimethyl-1,4-hydroquinone.

REFERENCES

1. Petrov, L.A., Kharchuk, V.G., Shishmakov, A.B., and Tokarev, E.A., *Zh. Org. Khim.*, 1998, vol. 34, no. 3, p. 376.
2. Kharchuk, V.G., Shishmakov, A.B., Koryakova, O.V., Tokarev, E.A., Sattarova, V.V., and Petrov, L.A., *Zh. Obshch. Khim.*, 1999, vol. 35, no. 7, p. 1118.
3. Kharchuk, V.G., Shishmakov, A.B., Koryakova, O.V., Yanchenko, M.Yu., Buldakova, L.Yu., Tokarev, E.A., Sattarova, V.V., and Petrov, L.A., *Zh. Org. Khim.*, 2000, vol. 70, no. 6, p. 993.
4. Shishmakov, A.B., Kharchuk, V.G., Kuznetsova, O.V., Mikushina, Yu.V., Koryakova, O.V., Kovaleva, E.G., Petrov, L.A., Molochnikov, L.S., and Chupakhin, O.N., *Zh. Fiz. Khim.*, 2003, vol. 77, no. 4, p. 623.
5. Ivanov, A.V. and Kustov, L.M., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 2000, no. 1, p. 38.
6. Lur'e, A.A., *Sorbenty i khromatograficheskie nositeli* (Sorbents and Chromatographic Packing Materials), Moscow: Khimiya, 1972.
7. Koryakova, O.V., Zhuravlev, N.A., Kovyanina, S.A., Vovkogrud, E.G., Maksimova, L.G., Kharchuk, V.G., Shishmakov, A.B., Kuznetsova, O.V., and Mikushina, Yu.V., Abstracts of Papers, *Seminar SO RAN-UrO RAN po termodinamike i neorganicheskim materialam* (Seminar of the Siberian and Ural Divisions of the Russian Academy of Sciences on Thermodynamics and Inorganic Materials), Novosibirsk, 2001, p. 94.
8. Bellamy, L., *The Infrared Spectra of Complex Molecules*, London, 1954.
9. Kharchuk, V.G., Kolenko, I.P., Petrov, L.A., and Gus'kova, L.M., *Zh. Org. Khim.*, 1986, vol. 22, no. 11, p. 2306.

10. Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., *Inversionnye elektroanaliticheskie metody* (Stripping Electroanalytical Methods), Moscow: Khimiya, 1988, p. 48.
11. Smirnov, A.L., Golubev, N.A., and Molochnikov, L.S., *Zh. Fiz. Khim.*, 1999, vol. 73, no. 7, p. 1290.
12. Vishnevskaya, G.P., Safin, R.Sh., Frolova, E.N., Kopylova, V.D., and Portnykh, N.V., *Zh. Fiz. Khim.*, 1994, vol. 68, no. 3, p. 533.
13. Kovaleva, E.G., Molochnikov, L.S., and Lipunov, I.N., *Zh. Fiz. Khim.*, vol. 74, no. 8, p. 1403.
14. Vishnevskaya, G.P., Molochnikov, L.S., and Safin, R.Sh., *EPR v ionitakh* (EPR in Ionites), Moscow: Nauka, 1992.
15. Bond, A.M., *Polarographic Methods in Analytical Chemistry*, New York: Marcel Dekker, 1980, p. 34.
16. Shaikhutdinov, Sh.K., Trukhan, E.M., Astanina, A.N., Molochnikov, L.S., Frumkina, E.L., and Kopylova, V.D., *Zh. Fiz. Khim.*, 1986, vol. 60, no. 4, p. 997.
17. Min, T.V., Tuen, N.V., and Rudenko, A.P., *Vestn. Mosk. Univ., Ser. 2: Khim.*, 1995, vol. 36, no. 3, p. 278.